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Abstract

Previous theoretical research has revealed conceptual similarities among a number of mathematical learning theories and theories regarding 
language acquisition. This intersection of ideas led to a novel framework defining four stages of mathematical learning: Receiving, Replicating, 
Negotiating Meaning, and Producing. Through qualitative research methods and transcripts of student communication and work, this study 
empirically investigates this theoretical construct. The findings herein demonstrate that this construct is helpful in characterizing where stu-
dents are in the process of learning mathematics and how to help them attain the next level in the stages of learning. 
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Introduction

Research in language acquisition and the learning of math-
ematics continue to evolve. Recently, these two realms have 
intersected and mathematics learning has been shown to 
share similarities with language acquisition. In investigating 
the intersection of learning theories from mathematics and 
language acquisition, Bossé, et al. (2018a) and Bossé, Ringler, 
Bayaga, Fountain, and Slate Young (2018b) have proposed 
the Math Acquisition Framework, a multistage theory of 
mathematical learning with potentially far reaching ramifi-
cations for education. The stages in this framework include: 
Receiving, Replicating, Negotiating Meaning, and Producing. 
The Mathematics Acquisition framework was first proposed 
(Bossé, et al., 2018b) and then applied in the context of el-
ementary and middle grades fraction learning (Bossé et 
al., 2018a).  There remains a need to empirically apply this 
construct to further investigate student understanding and 
learning regarding other fields of mathematics and generally 
across mathematics. In this qualitative study, we employ the 
framework to investigate student mathematical understand-
ing in a number of mathematical contents. Specifically, we 
examine student understanding in topics such as number 
theory (prime numbers), graphical representations, word 
problem, graphical analysis of asymptotes, and combinato-
rics. The goal of this study is to simultaneously investigate 
the framework in question and see what additional insights 
it provides to the assessment of student mathematical learn-
ing.

Background 
While research in language acquisition and mathematical 
learning has developed along mostly distinct trajectories, ex-
tant studies examine the associations between linguistic and 

mathematical literacy (Thompson & Rubenstein, 2014) and 
the functions of language in the math classroom (Moschk-
ovich, 2005). However, few investigations have considered 
parallels between language acquisition and mathematical 
learning. To this end, Bossé et al. (2018a) and Bossé et al. 
(2018b) have proposed links between language acquisition 
and mathematical learning. To investigate and apply the 
framework they developed, background literature must be 
considered. This section briefly examines a number of fields 
of research connected to the Math Acquisition Framework 
that is later examined. A more thorough literature review 
and argumentation surrounding the selection of frameworks 
employed can be found in Bossé et al. (2018b). It is important 
to note that the mathematics and language learning frame-
works employed in the development of the Math Acquisition 
Framework are far from exhaustive. Indeed, countless other 
frameworks could be investigated – to the extent that one 
could become paralyzed by the sheer volume of options. 
Thus, constraints were necessarily imposed in the initial de-
velopment of the Math Acquisition Framework and these 
constraints have been maintained through following articles 
and studies employing the framework. 

Language Acquisition
Within linguistics it is generally thought that the acquisition 
of language in childhood should be examined as a process 
entirely separate from other forms of more conscious learn-
ing (Chomsky, 1965; Lenneberg, 1967, 1975), though it is 
less clear that this is true for language acquisition outside 
of childhood, commonly called second language acquisition. 
We contend that even if the processes are not entirely paral-
lel, examining what we know about language acquisition can 
help to explain several observable phenomena in mathemat-
ical learning. The theories of language acquisition utilized in 
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the present analysis primarily include the frameworks of 
Krashen (1977, 1982) and Cummins (1979, 1984, 1991). 

Input, Output and Interlanguage. As a foundational lan-
guage acquisition framework, Krashen’s Monitor Model 
(Krashen, 1977, 1982) makes a distinction between lan-
guage learning (conscious learning occurring in the lan-
guage learning classroom) and language acquisition (nat-
uralistic acquisition through environmental interaction) 
and argues that the two can occur simultaneously. Krash-
en considers the conscious learning to be a sort of “mon-
itor” that mediates unconscious processes of acquisition. 
Krashen also highlights the importance of what he calls 
“comprehensible input” in the language to be acquired: 
language that students are able to understand, but that 
is slightly beyond their current level of production. He ar-
gues for a “silent period” through which language learners 
often progress, where they are more focused on listening, 
understanding, and processing language rather than pro-
ducing it. 

Swain (1985) proposes that production of language is nec-
essary for acquisition and that language learners expe-
rience “comprehensible output”, where they notice gaps 
in their own production and cannot adequately articulate 
ideas they hold in their minds (Swain & Lapkin, 1995). 
The idiosyncratic roles of comprehension (or input) and 
production (or output) lead to the notion that language 
learners develop and practice a distinctive set of unique 
and constantly evolving linguistic codes, called an “inter-
language” (Selinker 1972, 1992). 

Cummins’ Model. Cummins’ framework of second lan-
guage acquisition (Cummins, 1979, 1984, 1991) principal-
ly describes the process of second language acquisition 
by English language learners who are native speakers of 
non-English languages and are being integrated into an 
English-language school environment. Cummins’ frame-
work distinguishes between everyday communicative 
language skills called Basic Interpersonal Communication 
Skills (BICS) and Cognitive Academic Language Proficiency 
(CALP), the more specific linguistic skills that are needed 
for academic success in a second-language school envi-
ronment. Cummins notes that a key distinction between 
these two types of language skills is that BICS is somewhat 
cognitively undemanding, whereas CALP is much more 
cognitively demanding.

Cummins’ framework also proposes the Linguistic Inter-
dependence Theory, better known as Common Underly-
ing Proficiency (CUP), stating that, when learning a second 
language, experience and learning in either language will 
lead to increased competence underlying both languages. 
According to CUP, transferable skills, learning, and knowl-
edge in any language facilitate the learning of the second 
language. This agrees with a large body of research on 
third language acquisition that argues that there is no 
need to re-teach academic concepts in other languages 
because knowledge is transferable between languages 
(Cabrelli Amaro, Flynn, & Rothman, 2012).

Mathematical Learning Theories
Van Hiele Model. Van Hiele (1986) posits five sequential 
levels in the process of geometric learning (Blomert & 
Froyen, 2010). In Visualization, students recognize figures 
but do not recognize properties of these figures. In Anal-
ysis, students analyze components of figures, but cannot 
explain interrelationships between and properties among 
figures. Informal Deduction defines the stage where stu-
dents understand and utilize properties within and 
among figures and can follow informal proofs. Deduction 
designates when students understand and can use axiom 
systems in proofs and can prove theorems in numerous 

ways, but are unable to develop or understand less con-
ventional proofs in unfamiliar logical order. In Rigor, stu-
dents can abstractly examine, compare, and contrast dif-
ferent axiom systems. 

SOLO Taxonomy. Biggs and Collis’ (1982) Structure of Ob-
served Learning Outcomes (SOLO Taxonomy) states that 
students transition through a sequence of levels in the 
learning of algebra. In the Pre-structural phase, when en-
gaged in a task, students are distracted or misled by irrele-
vant or disjointed concepts (Ansari, Lyons, van Eimeren, & 
Xu, 2007; Biggs & Collis, 1982). In the Unistructural phase, 
when presented a rich task involving numerous concep-
tual pieces and affording alternate heuristics, students 
focus on the one concept/heuristic with which they are 
most comfortable to the exclusion of others which may 
be more efficient, effective, or explanatory (Ansari et al., 
2007; Biggs & Collis, 1982). During the Multistructural 
phase, students experiencing a task can use more than 
one conceptual piece or heuristic, but cannot integrate 
them into a single, powerful, workable whole. In the Re-
lational phase, students integrate conceptual pieces of a 
task into a coherent whole with structure and meaning. In 
the final phase, Extended Abstract, students can general-
ize the coherent structure, adopt novel features into the 
structure, modify the structure, and apply the structure in 
novel scenarios.

Unlike the van Hiele Model which has disjoint levels which 
become connected through a five-phase sequence (i.e., In-
quiry/Information, Directed Orientation, Explication, Free 
Orientation, and Integration), the SOLO Taxonomy recog-
nizes intermediate stages: Prestructional to Unistructural; 
Unistructural to Multistructural; Multistructional to Rela-
tional; and Relational to Extended Abstract. 

Dienes’ Learning Cycle. In a study that predicted variations 
in mathematics ability by investigating the correlation 
between basic numerical skills and early arithmetic abili-
ty, Lyons et al. (2014) recognize that there was sufficient 
indication that suggest that “…overall, symbolic number 
processing was more predictive of arithmetic ability than 
non-symbolic number processing, though the relative im-
portance of symbolic number ability appears to shift from 
cardinal to ordinal processing” (Lyons et al., 2014, p. 1). 
This is supported by the work of Dienes (1971) and Dienes 
and Golding (1971), who propose a six-stage sequence, 
the Learning Cycle, through which a learner comes to un-
derstand mathematics. The first three stages (i.e., Free 
Play, Games, and Searching for Communalities) bear 
strong similarities with Piaget’s descriptions of assimila-
tion and accommodation. The last three stages include: 
Representation, where the learner discovers common-
alities among experiences and generalizes such to novel 
investigations; Symbolization, where the learner need no 
longer experience mathematics through activities and 
conceptual understandings can be further investigated, 
applied, and extended through symbolism; and Formaliza-
tion, where mathematical concepts can be interconnected 
into structures leading to mathematical proofs.	

Intersecting Theories of Language Acquisition and Mathemat-
ics Learning
It can be argued that a number of mathematical peda-
gogies (e.g., dialogic teaching, talk moves, number talks, 
and collaborative learning) speak at least informally to 
the intersection of language and mathematics learning. 
It can be inarticulately said that some of these pedago-
gies argue generally that students learn through listening, 
communication, and interaction and that student articula-
tions can be used as a component of assessment. In many 
ways, it can be seen that the Math Acquisition Framework 
agrees with many of these pedagogies. However, while 
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these pedagogies were initially constructed upon robust 
theoretical frameworks, most of the discussions concerning 
these pedagogies have become rather informal (their foun-
dational frameworks only infrequently mentioned) and do 
not connect tightly with language learning dimensions such 
as: Krashen’s (1977, 1982) comprehensible input; Swain’s 
(1985) comprehensible output; Selinker’s (1972, 1992) inter-
language; and Cummins’ (1979, 1984, 1991) BICS, CALP, and 
CUP. Thus, the Math Acquisition Framework sought to go be-
yond some of these pedagogies and provide a more robust 
lens into student mathematical learning and language.

Through simultaneously investigating conceptual common-
alities among theories associated with language acquisition 
and mathematics learning, Bossé et al. (2018a) and Bossé et 
al. (2018b) propose the Math Acquisition Framework, a four 
stage learning sequence to mathematics connecting defini-
tions of the constructs from language acquisition (Cummins; 
1979, 1984; Krashen & Terrel, 1983), levels of learning/know-
ing (Bloom & Krathwohl, 1956; Bruner, 1966, 1979), and the-
ories of mathematical learning (Biggs & Collis, 1982; Dienes, 
1960, 1971; Dienes & Golding, 1971; van Hiele, 1986). The 
four stages are herein only briefly defined.

Receiving Mathematics. During early mathematical learning, 
children begin by simply hearing teacher communication 
and imitating what they can. They have limited comprehen-
sion of mathematical concepts. They can only provide one 
or two answers to simple, predictable questions. They strug-
gle to distinguish between valid and misleading information. 
They recognize predictable computations and solution strat-
egies. While they can imitate some teacher communication, 
they cannot independently create their own mathematical 
ideas. Their mathematical communications are often math-
ematically and linguistically unsound and tolerated for the 
sake of learning.

Replicating Mathematics. In the next stage of mathematical 
learning, students communicate simple, conceptualized in-
formation. They have not yet constructed mathematical con-
nections. Mathematical communications lack both linguistic 
precision and conceptual understanding. Students employ 
the limited heuristics with which they feel most familiar. They 
read mathematical examples and attempt to replicate in 
both speech and writing what they observe from the teach-
er. Students do not independently create novel information. 

Negotiating Meaning. In this stage, speaking becomes a more 
primary role in student learning. Most classroom mathe-
matics communication is comprehensible. Students under-
stand most mathematics and employ better mathematical 
language. In Personal Negotiation of Meaning, they apply 
mathematical concepts to their own interests, but through 
a limited repertoire of concepts, problems, and heuristics. 
Mathematical concepts remain disconnected. In Interper-
sonal Negotiation of Meaning, students try to weave the 
communicated ideas of others into their own understanding. 
They construct intersections of ideas, but do not surpass the 
topics being investigated in class.

Producing Mathematics. Students in this stage have semi-pro-
fessional understanding of mathematics. They are autodi-
dactic and able to fluently communicate mathematical ideas. 
Mathematical concepts become interconnected and multiple 
mathematical representations are employed to communi-
cate mathematical ideas. Most notably, students in this stage 
produce mathematics beyond that which is encountered in 
class and that is novel to the student.
	
Characteristics of the Stages of Learning. In addition to the 
stages developed in the Math Acquisition Framework, Bossé 
et al. (2018a) and Bossé et al. (2018b) suggest that other di-
mensions can be considered through the framework. Among 

others, these include: the transition from the use of social 
and informal language to that of academic and formal lan-
guage; the transition from working in cognitively undemand-
ing to cognitively demanding environments; the transition 
of the locus of activity from the teacher-centric to the stu-
dent-centric; and a transition of the primary mode of com-
munication from listening to reading and speaking to writing.

Objective
This study examines samples of student work and commu-
nication using the Math Acquisition Framework Bossé et al. 
(2018a) and Bossé et al. (2018b) that integrates notions from 
mathematics cognition and language acquisition. We ex-
amine students’ mathematical understanding to determine 
where they are among the stages of: Receiving, Replicating, 
Negotiating Meaning, and Producing. Focusing attention on 
these elements would have long lasting implication to math-
ematics cognition as well as curriculum development (Kolk-
man, Kroesbergen, & Leseman, 2013).
	
However, more than simply applying the framework to ana-
lyze some transcripts of student work, this investigation 
seeks to determine the framework’s explanatory power. In 
essence, the unique factor of this study is that it both uses a 
novel framework and assesses whether it provides a unique 
window through which to consider student work.

Research Methodology
Using various mathematical topics and student learning sit-
uations, the present study seeks to explore the influence of 
the Math Acquisition Framework on understanding math-
ematics cognition. Following the opinions in the literature 
related to language acquisition and mathematical learning 
theories, a set of mathematics questions were developed 
geared towards unpacking student mathematical under-
standing, communication, and behaviors. These questions 
regarded topics consistent with the students’ respective 
classroom levels. 
	
The transcripts employed in this study were from the video-
taped work of twelve students (S1-S12) from middle school 
through high school. These students are defined in introduc-
tions to each transcript. Teacher 1 (T1) is a 5th grade teacher, 
Teacher 2 (T2) is a 9th grade teacher, and Teacher 3 (T3) is an 
11th grade teacher. The researcher (R) was a faculty mem-
ber at a university in the southeastern region of the United 
States. These videos and transcripts were used due to their 
complementary nature: some were of individuals and others 
of groups of students; some included teacher or researcher 
interactions with students and others did not; and the sce-
narios depicted a wide range of grades and mathematical 
topics. Therefore, the situations were selected more so be-
cause of their differences than their similarities. The authors 
[or researchers] hoped that this would provide a broad in-
vestigation of student work, thinking, and experiences rather 
than a narrow look at similar scenarios.

To determine notions within the data and to reflect on its 
meaning (Creswell, 2003), a systematic process of data in-
vestigation was undertaken (Bogden & Biklen, 2003). Video 
tapes were transcribed and copies of student work were 
merged with each transcript. Transcripts were independent-
ly analyzed to investigate student mathematical under-
standing, communication, and behaviors applicable to the 
Math Acquisition Framework (Bossé et al., 2018a; Bossé et 
al., 2018b). Common themes in the transcripts were char-
acterized and labeled. Coding structures were compared, 
differences reconciled, and refinements were made to initial 
codes. Through the process of check-coding (Miles & Hu-
berman, 1994), researchers were able to reach consensus 
on the analysis of all transcripts. Narrative summaries, in-
cluding illustrative excerpts from the transcripts described 
stages in the Math Acquisition Framework. These summaries 
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were developed and validated by the researchers against 
transcripts and student work, and descriptive summaries 
were generated.

Results
The results reported below are organized by ordering con-
sistent with the stages in the Math Acquisition Framework 
from Bossé et al. (2018a) and Bossé et al. (2018b). Student 
work and communication are analyzed through mathe-
matical topics such as number theory (prime numbers), 
graphical representations, word problem, graphical analy-
sis of asymptote, and combinatorics. 

Receiving Mathematics 
(Students and teacher in a 5th grade class considering 
prime numbers)
T1:	 What are prime numbers?
S1:	 1, 2, 3, 5,…
S2:	 Not 1. 1 is not prime.
S1:	 Why not?
S2:	 It wasn’t on our list. [The list provided by the 
teacher.]
S1:	 Were the other numbers on our list?
S2:	 Yes, but they keep going.
T1:	 That is a list of prime numbers. Can you give me 
a definition for prime numbers?
S1:	 It’s something about factors.
S2:	 Numbers with two factors. [Note the student’s 
omission of “distinct” from the teacher’s definition.]
S3:	 Every number has two factors. 6 has 2 and 3 for 
factors, and 1 and 6 for factors. 
S1:	 That’s one, two, three, four factors.
S2:	 Prime numbers are odd.
S3:	 2 isn’t odd.
S2:	 Other than 2.
S1:	 And 2 has two factors, 1 and 2.
S2:	 9 is odd. How many factors does it have? 1 and 9 
and 3 and 3. It has four factors.
S3:	 But you can’t tell the 3s apart. So, you count only 
one 3. 9 has three factors, 1, 9, and 3.
S1:	 But that still means that it doesn’t have two fac-
tors. So, 9 is not prime.
S2:	 What about 1. It is 1 times 1. Does it have one 
factor or two?
S3:	 I can’t tell the 1s apart. So, it must have 1 factor.
S1:	 That would mean that 1 is not prime. But it was 
on my list and [the teacher] did not say that it was wrong. 
I think she looked at my list. She did not say it was wrong. 
So, either my list is wrong and she didn’t notice it or 1 must 
be prime.

In the construct Receiving, the teacher initiates and guides 
mathematical discussions and investigations. In the tran-
scripts above, while student communication dominates 
the transcripts, the communication includes little more 
than three students attempting to explain and use what 
they had previously heard from their teacher’s lectures. 
The students provide no novel thought or ideas. They 
wrestle through misconceptions. They begin by regurgi-
tating a list of prime numbers previously provided by the 
teacher. They are not attempting to mimic the teacher’s 
technique or understanding; to their best recollection, 
they are simply repeating a list of numbers they have 
heard or seen. Unfortunately, their list begins with 1. In-
deed, many of the misconceptions are born from Student 
2 omitting the word “distinct” from the definition.

While this transcript may be interpreted as depicting stu-
dents’ mathematical misunderstandings, the framework 
allows an alternate interpretation. Rather than focusing on 
either what the students do not know or misconceptions 
depicted in the transcripts, the framework affords the rec-
ognition that these students are, collectively, at the learn-

ing stage of Receiving. They have not progressed to the 
stage of Replicating, where they would read mathematical 
texts or teacher notes and attempt to replicate ideas and 
techniques observed in the text and in instruction.

The content of the mathematics discussed by the students 
is considered socially and informally, and is lacking math-
ematical precision. Notably, this does not denote a lack 
of mathematical understanding as much as where these 
students are in the process of learning. It is not that they 
are being imprecise; they are being as precise as they pos-
sibly can in the context of the mathematics that they are 
learning and in their stage of development.

Notably, the last statement from Student 1 seems to im-
ply that the student did not ask questions of the teacher. 
This may imply the silent period (Krashen & Terrell, 1983), 
when students listen to teacher-generated mathematics, 
try to understand the flow of the conversation, and are 
mostly unable to interactively communicate mathemat-
ics. Just as Krashen (1982) proposes that comprehension 
precedes production for the progression of language ac-
quisition, we observe that listening is the primary role of 
the student, with speaking taking a secondary and limited 
role. This does not imply that teachers do not use ques-
tioning techniques through which to understand student 
thinking and assist the student in clarifying ideas; it simply 
means that students have insufficient mathematical mas-
tery to provide significant responses in return. 

While the three students are actively communicating 
about the mathematics, the purpose of their communica-
tion is to articulate their own ideas; it is not to learn from 
each other. They do not recognize times of communica-
tion as opportunities for learning. They interpret learning 
as listening while the teacher disseminates information. 
While they may indeed learn though the practice of com-
munication, they do not perceive communication as hav-
ing that purpose. Nevertheless, this does not dissuade the 
teacher from having that purpose and attempting to pose 
questions and prompts that could lead to student learn-
ing. 

Replicating Mathematics 
Replicating 1. 
(Students in a 6th grade class considering division of frac-
tions)
S4:	 To do , I’d use “keep-change-flip.”
R:	 What is keep-change-flip? 
S4:	 Our teachers taught us keep-change-flip. You 
keep the first fraction, change division to multiplication, 
and flip the second fraction. It makes . 
R:	 Why do you do it that way?
S4:	 That’s what we were told.
R:	 Can it be done another way?
S4:	 I think that it can be done like . But I’m not 
sure if that always works.
R:	 Does keep-change-flip always work?
S4:	 I’m not sure. But that is what we are supposed to 
do. It must work every time, or my teachers would tell us 
to do it a different way.

Replicating 2. 
(Students and teacher in an 8th grade class considering the 
slope of a line)
R:	 How are you going to solve this problem?
S5:	 [Flipping pages in the book.] I’m going to find an 
example close to this one. [Landing on a page with a few 
examples from the topic.] The problem looks kinda like 
this one. 
R:	 Which one?
S5:	 Example 3.
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R:	 How does it look like that example and not the oth-
ers? 
S5:	 Well, here [pointing to example 3] the two points 
are up here [pointing to the first quadrant]. The others have 
points in different areas [meaning quadrants].
R:	 So, what are you going to do?
S5:	 If I take these values and plug them into the formu-
la, I should get the slope of the line. 5 minus 3 divided by 4 
minus 4 is 2 divided by 0. 
R:	 Is that the slope of the line?
S5:	 Well, I think that I put the numbers in right. But I 
don’t think that we can divide by zero. I probably used the 
wrong example. Let me look again. 

Replicating 3. 
(Student and teacher in a 9th grade class considering the equa-
tion of a line)
T2:	 Please read the example. [The example states: The 
point slope form of a line is .]
S6:	 Y minus y one equals m times x minus x one.
T2:	 Can you explain to me what that means? Or what 
each part means?
S6:	 Well, y is the y-variable and x is the x-variable and m 
is the slope.
T2:	 What about the other symbols?
S6:	 That’s a y one and an x one.
T2:	 We pronounce those y sub one and x sub one. Sub 
means subscript. Do you know what they mean?
S6:	 I think that they are values for x and y.
T2:	 How do they differ from the x and y, which you said 
were variables?
S6:	 Well both x and x sub one contain values. So are 
they both variables?
T2:	 If we had , what type of variable is x?
S6:	 I think it is an independent variable. And y is the 
dependent variable.
T2:	 Great. And what are 3 and 2?
S6:	 Constants.
T2:	 Great, again. So, can we apply that to ?
S6:	 Well, are x and x one – I mean x sub one – inde-
pendent variables?
T2:	 What values go in for x?
S6:	 Any value in the domain.
T2:	 What values can go in to x1?
S6:	 Any value?
T2:	 Well, that value is specified by the point  . 
S6:	 What point?
T2:	 The generic point  .
S6:	 Which generic point?
T2:	 Ok. Remember when you had slope intercept form 

 ; b was the value of the ordered pair  .
S6:	 Well, yes. But the b was the x-intercept of the 
graph. No, the y-intercept of the graph. Ok, ok… Never mind.   

 is the y-intercept. I get it.
T2:	 So, what is the value of b? 
S6:	 Whatever it is for that problem.
T2:	 So, it is not any value. It is a value specific to that 
problem.
S6:	 Right.
T2:	 The same for x1 and y1. These are values specific 
to the problem. While x is an independent variable and can 
contain all values of x, x1 and y1 hold values specific to the 
problem and not all values.
S6:	 So, what are the values for x one and y one in this 
problem?
T2:	 x1 and y1 are variables for specific values. So, for 
instance, let’s make  be  .
S6:	 Then, does that become  ?
T2:	 Yes, but what does that mean?
S6:	 I’m really not sure. I guess that we can now get    

 and that can become  .
T2:	 Ok, so what is that?

S6:	 I have no clue.
T2:	 Do you see that it is now in slope intercept form?
S6:	 No. Slope intercepts form is like  .

Student 4 attempts to replicate the “keep-change-flip” heu-
ristics previously encountered. Student 5 attempts to solve a 
problem by merely replicating an example from the textbook 
closely aligned to the problem. Notably, neither of these 
students possesses conceptual understanding surrounding 
the problem. They recognize their role as singularly that of 
parroting back to the teacher the ideas and techniques pre-
viously encountered. They believe that this is sufficient and 
that creativity and seeking for alternate heuristics are unnec-
essary – if not inappropriate. 

Student 6 is attempting to read mathematics in order to 
replicate ideas, albeit with partial success. Some reading 
notation is mastered while other notations remain beyond 
understanding. Nevertheless, reading is now being supple-
mented to listening as a mode of learning. This reading has 
as a goal the understanding of the text in order to perform 
tasks as shown in the text, or replicate an example in the 
text. Importantly, Student 6 does not seem to value under-
standing the text as much as accomplishing the goal of solv-
ing a problem. 

While the three transcripts demonstrate dissimilarities in 
mathematical content and student communication, far more 
significant commonalities exist. Students 5 and 6 demon-
strate examples of incomprehensible output. Student 5 
reads an example from the book, but, because the example 
results with a denominator of zero, considers if the student 
has selected an appropriate example; this student read the 
problem and example, but did not fully understand it. Stu-
dent 6 employs terms such as variable, independent varia-
ble, domain, and generic point but these terms have incom-
plete meaning. The inability to adequately articulate ideas 
which may be understood to some level, incomprehensible 
output, is evidenced in the communication of Student 4’s use 
of “keep-change-flip” and Student 5’s use of “area” to mean 
quadrant on the Cartesian plane. Student 6 struggles to com-
municate ideas known regarding the use of independent var-
iables and variables representing constants in the context of 
a linear function. While communication continues to develop 
in each of the cases, each of these three students have now 
surpassed the silent period. 

Students 4 and 5 demonstrate articulations which remain 
more social in nature and Student 6 employs more academic 
language. Notably, this is not a function of the mathematical 
topic at play. For instance, Student 4 could have used aca-
demic language such as numerator, denominator, division, 
reciprocal, and multiplicative inverse. Student 6 demon-
strates that the use of more academic language does not 
necessarily connote more advanced mathematical under-
standing.

Analysis of these transcripts reveals that these three stu-
dents acquiesced to a teacher-centric locus of activity and 
learning. They considered the teacher’s opinions and actions 
as sacrosanct – to be accepted, and to be replicated. Their 
goal as learners was simply to do as they had seen and heard 
from the teacher or the authoritative textbook selected by 
the teacher. This is evidenced by Student 4 stating, “That’s 
what we were told… [T]hat is what we are supposed to do. It 
must work every time, or my teachers would tell us to do it a 
different way”, Student 5 trying to replicate what s/he read in 
the textbook, and Student 6 immediately adopting the teach-
er’s vocabulary in his/her communication (e.g., “y one and an 
x one”  “y sub one and x sub one”  “x and x one – I mean x 
sub one”, “generic point”, and “slope intercept form”). 

Notably, although discourse among students is not repre-
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sented in the transcripts, the communication gains math-
ematical precision and maturity over the Receiving stage. 
Nevertheless, mathematical language, interpretation, and 
nomenclature are all still lacking. Thus, remaining most-
ly informal, the discussions are trending toward less for-
mal and slightly more focused toward learning than sim-
ply communication. While Students 4, 5, and 6 are each 
actively communicating with the researcher or teacher 
about the mathematics, they perceive the purpose of their 
communication as assessment rather than learning. The 
communication, via questioning or activities, is generat-
ed by the adult not the student. Nevertheless, contextu-
alized communication is becoming more mathematically 
focused and precise. 

Students 4, 5, and 6 are beyond the stage of simply Re-
ceiving by listening to teacher lectures. While listening 
remains a significant aspect of learning, reading takes on 
an increasing role. However, they are not yet fully Nego-
tiating Meaning regarding the mathematics that they are 
learning.

Negotiating Meaning

Personal 1. 
(Student in a 10th grade class considering algebra applied to 
purchasing a car)
S7:	 My Dad says that he will either buy me a brand 
new car when I turn 16 or he will buy me two six year old 
cars in a row. I mean, he’ll buy me a six year-old car when 
I turn 16 and, when that one dies, he’ll buy me another six 
year-old car. 
R:	 What are you going to choose?
S7:	 I’ve gotta look at it. I need to figure out how long 
a car lasts. And how many miles a six year-old car has. I 
guess I would also like to know who owned the cars. 
R:	 Anything else?
S7: 	 Wow. So much more. I need to know about me-
chanical costs and warrantees. I know that new cars are 
pretty covered. And they shouldn’t break down much. But 
they only last so long. But I like new cars. I know how I 
drive and that I can keep it good. I will know all the prob-
lems it has.
R:	 You have been thinking about this a lot.  How are 
you going to figure this all out? 
S7:	 Well I think that I can set up some equations to 
investigate it more. I’m not yet sure how. But I want to 
make the right decision.
R:	 Do you think that the math you have learned so 
far has given you the tools to figure this one out?
S7:	 I’m not sure yet. But I’m gonna try. I’ll look more 
in the book if I have to.

While Student 7 lacks some necessary mathematical 
knowledge in the context of his/her investigation, this stu-
dent is Personally Negotiating Meaning in mathematics by 
applying mathematics to his/her own life. The student is 
attempting to integrate what s/he discovers into his/her 
existing framework of knowledge. While mathematical 
learning is certainly growing, this student’s mathematics 
exhibits both voids and disconnectedness. Nevertheless, 
the purpose for the mathematical learning in this context 
is both personal and pragmatic in nature. While not to the 
exclusion of listening to lectures, Student 7 now routinely 
investigates and accesses written mathematics and expla-
nations. Learning is progressing from auditory to written 
form, with fewer instances of either incomprehensible in-
put and output.

Student 7’s communication is directed toward the adult 
figure. The primary purpose of the communication is 
pragmatic: to fulfill his/her personal interests and accom-
plishing a task. While the purpose may be to learn, it is not 

to collaborate in learning with others. The mathematics 
communication is becoming increasingly academic, albeit 
in the direction selected by the student more so than by 
the teacher. Casual conversation without the purpose of 
solving the task at hand has increasingly less value. More-
over, the locus of activity is shifting from centering on the 
teacher to the student’s own interests and motivation for 
learning.
	
Student 7 has not yet progressed to Intrapersonal Nego-
tiating Meaning, where students discuss mathematics in 
order to collaboratively learn mathematics. S/he does not 
mention collaborating with other students to learn and 
may not yet value this interaction.

Personal 2. 
(Student in Xth grade investigating factoring quadratics.)
R.	 If  , then 

 . What do you think?
S8:	 Well, I need to try some examples. I guess we 
can start with anything. How about  ? That 
would mean that  should also be factorable. 
R:	 I did not use the word factorable.
S8:	 No, but  is factored. So, it means 
that the quadratics are factorable. Is that correct? (No re-
sponse from the researcher.) I think it’s right. I guess I need 
to factor   and  . (S8 makes numer-
ous attempts to factor both quadratics.) I don’t know what 
to do.  I can’t factor either of these. I may need to use the 

quadratic formula. (S8 writes out:  .) So, 

that is  . Um? 
We can’t take the square root of a negative number. Um?  

Well, we can. We can maybe do something like  . 

And the other quadratic would give us: …  . That 
did not get me close to   or  . 
R:	 So, what are you going to do?
S8:	 Well, I can’t tell if it is true yet until I can factor 
some quadratics. Um? And if I start with a quadratic, I can’t 
always know if it is factorable. Um? But it said that it is fac-
torable. But  isn’t factorable… Um? I don’t think 
that I understand. 
R:	 (About to ask a question…)
S8:	 Wait. I think that I should start with a quadratic 
that I know is factorable.
R:	 How would you do that?
S8:	 I think that I can work backwards. If 
I start with  like  , 
then,  . So, 

 . Hey, it worked!
R:	 So, what did you not initially understand? 
S8:	 We need to start with a factorable quadratic.
R:	 What if the quadratic is factorable in the reals, 
but not in the rationals, or even in the complex? 
S8:	 I would need to check, but that might work. I 
would have to look at my work. 
R:	 We can hold off on that for now. But let’s go one 
more step. If  and  are factorable, 
what about  and  ? 
S8:	 I’m gonna guess first, then I’ll check one out. I 
just gonna guess that  would be something 
like  . You know, writing my factors back-
wards. That way, just like p and r works with a like before. 
I’ll have to check this out. I know that I could start with 

 , but I need to make sure that everything 
works. If it does, that would be really cool.
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R:	 What would be?
S8:	 It would mean that, if  is factorable, 
then  ,  , and  are all factor-
able. 

Notably, Student 8 communicates more with him/herself 
than with the researcher. S8 looks to past work to further 
understand immediate questions. S8 is Personally Negoti-
ating Meaning in mathematics by working independently to 
understand the mathematics at hand. S8 investigates and 
accesses written mathematics and explanations, even when 
some of those ideas were previously proposed by him/her-
self. As with S7, learning is progressing from auditory to writ-
ten form, with fewer instances of either incomprehensible 
input and output.
	
Student 8’s communication is primarily rhetorical in nature 
– more directed to self rather than the researcher. The math-
ematics communication is academic and self-directed. The 
locus of activity is shifting learning from self. In this brief and 
restricted scenario, there is no evidence that Student 8 has 
progressed to Intrapersonal Negotiating Meaning, where 
students discuss mathematics in order to collaboratively 
learn mathematics. 

Interpersonal. 
(Students in an 11th grade class considering rational functions)
S9:	 I’m trying to figure out if graph can cross an asymp-
tote. 
S10:	 We know that it can’t cross a vertical asymptote. 
That is where the function is undefined. 
S9:	 Right. But can a function cross another kind of as-
ymptote?
S11:	 You mean like a horizontal or slant asymptote?
S9:	 Or even a curved asymptote.
S10:	 What if we start with something kinda obvious? 
What if we have vertical asymptotes at -2 and 2 with a x-in-
tercept at 0. Then the graph would make an “S” between the 
asymptotes. 
S11:	 But that is only when we have no other roots be-
tween those asymptotes… And if the root is not an even root; 
and even roots would give us a bounce. But, where is the 
horizontal asymptote? 
S9:	 I don’t think it matters. Wherever the horizontal 
asymptote is, no matter how high or low, the graph will “S” 
through that area and go from negative infinity to positive in-
finity. So, it must go through the asymptote. So, that answers 
my question. 
S11:	 So, that must hold for slant and curved asymptotes 
for the same reason. 
S10:	 Ok. But that only deals with the case of between 
asymptotes. What about outside of asymptotes? Can a graph 
cross an asymptote outside of vertical asymptotes? 
S9:	 I don’t know. Is there a way we can test it?
S11:	 We could put functions in the calculator. But that 
could take forever.
S10:	 We probably need to think about it – before we 
just start plugging in functions. We could construct a rational 

function to do what we want. For instance  will give us 
a vertical asymptote at 0 and -1. So, we could stay to the right 

of 0. What happens if we have something like  . 
That would put both roots to the right of the vertical asymp-
totes. 
S9:	 And a horizontal asymptote at 1.
S11:	 Let’s graph it. [Uses a graphing calculator.] 
S10:	 Maybe we just got lucky, but the graph does come 
down from the vertical asymptote at 0 hit the x-axis twice 
and then go back up to 1. 
S11:	 Maybe we got lucky in other ways too. I think that 
if we have any two real roots (they could be the same) on 
the right of 0, the graph will still come down and cross the 

asymptote before coming back to it.

Students 9, 10, and 11 are intimately involved in discourse. 
Their mathematical interaction is increasingly academic in 
nature and purposed in learning. They recognize that they 
are learning from each other. While it can be argued that 
some of the previous transcripts depict students learning 
through communication, these students now recognize that 
learning occurs in this environment and communication has 
the purpose of learning. The students each recognize that 
the other students have important ideas to contribute to the 
group learning. Additionally, the students take the responsi-
bility for their own learning; the locus of teaching and learn-
ing is no longer teacher-centric. 
	
The mathematics discourse is becoming refined and precise, 
with little evidence of incomprehensible input or output. 
When they employ more casual language (e.g., “The graph 
would make an “S” between the asymptotes.”), it is because 
they have not been previously introduced to more formal 
appropriate language. Nevertheless, they communicate the 
notion in a manner which all understand in the context of 
the problem – an interlanguage. They listen to the ideas, in-
terpret them in the context of the investigation, use them to 
modify their own understanding, and proffer their refined 
ideas. 
	
Significant within the transcripts, Students 9, 10, and 11 are 
looking at the mathematics that they have previously en-
countered. They are making connections among previously 
disconnected ideas. However, they have not created math-
ematical ideas both new to them and beyond what they 
had previously encountered. Therefore, they are solidly en-
sconced in Negotiating Meaning and have not progressed to 
Producing Mathematics. 

Producing Mathematics
(Student and teacher in an 11th grade class considering permu-
tations and combinations)
T3:	 I am curious, why are you doing this like this? 
S12:	 It’s easier.
T3:	 How?

S12:	 It wants me to calculate  . But that is the same 

as  . And I just like my larger number to be the first 
factorial in the denominator.
T3:	 How do you know that those are equal?
S12:	 Well, it just makes sense. If r is 5, then n minus 5 is 
15. And, if r is 15, then n minus 15 is 5. So, either way, I get 
5!×15! in my denominator.
T3:	 That is interesting. I don’t think that I have ever 
thought about it that way before. It is pretty slick. It’s not in 
the book. Did you Google that?
S12:	 Nope. I just thought about it some. It’s just fun.
T3:	 Do you think that you can write that into a theo-
rem?
S12:	 Well, since  , I think that I could write it 

like  . That would make  . Yup, 
that works. 

Student 12 is producing mathematics that is new from his/
her perspective. While this mathematics is well known in the 
field, it is novel to this student and beyond anything that s/
he has experienced in learning activities to which s/he was 
exposed. The student’s mathematical language is elevated, 
precise, and accurate – academic language, devoid of exam-
ples of incomprehensible input and output. His/her commu-
nication often takes written form in order to effectively cap-
ture and communicate rich mathematical ideas. The locus 
of learning is now squarely student-centric and abstracted 
from the teacher. Altogether, this student can be placed in 
the stage of Producing Mathematics.
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Discussion 
The transcripts demonstrate cases in each of the stages of 
Receiving, Replicating, Negotiating Meaning, and Produc-
ing mathematics. Notably, transitions can be recognized 
through these transcripts of: Language from social and 
informal to academic and formal; Cognitive Level from 
undemanding to demanding; Locus of Activity from the 
teacher to the students; and Primary Mode of Commu-
nication from listening to reading and speaking to writ-
ing. Furthermore, additional dimensions regarding inter-
language are herein discussed. These are all consistent 
with the Math Acquisition Framework being investigated 
(Bossé, et al., 2018a; Bossé, et al., 2018b).

Interlanguage
More precisely, we can recognize that the aspects of lan-
guage are at play among the students reported above. 
For instance, Students 1-6 clearly struggle to understand 
some aspects of the previous class instruction. Some 
notions, although possibly seemingly well explicated in 
class, may have been only partially understood at the 
time; other concepts may have simultaneously been be-
yond the grasp of the students. This is an example of 
comprehensible input (Krashen, 1977, 1982; Krashen & 
Terrell, 1983). However, while not necessarily fully under-
standing all the mathematics at hand, fewer among the 
Students 7-12 seem to have had mathematical concepts 
out of their grasp. In respect to comprehensible output 
(Krashen, 1977, 1982; Krashen & Terrell, 1983), or ideas 
that students partially understand but cannot sufficiently 
communicate, it is apparent that Students1-6 struggle to 
communicate mathematical ideas.  This is far less the case 
with Students 7-12.

The sequence of transcripts and the idiosyncratic nature 
of student language demonstrate the evolution of Selink-
er’s (1972, 1992) interlanguage. In attempting to commu-
nicate mathematical ideas, most students construct their 
own versions of mathematical language. Notably, the stu-
dents in the earlier stages occasionally employ language 
and ideas that are incongruous with the mathematical 
topic under consideration. Students in the later stages 
employed language and ideas that are better connected 
to the topic in question, while revealing mathematical con-
nections they are making.
	
In summary, comprehensible input and output diminish 
throughout a student’s learning in two ways: longitudinally 
throughout a student’s mathematical academic develop-
ment and iteratively each time new mathematical topics 
are encountered. Additionally, the student’s mathematical 
interlanguage continues to evolve and be refined, to final-
ly approach proficiency.

Language 
The communication among Students 1-3 indicates that 
they are basing all of their knowledge on what they heard 
(or misheard) from the teacher. While the students at-
tempt to use the best language and ideas they can in or-
der to articulate their thoughts, their communications are 
social, informal, and mathematically imprecise. Student 
4 uses the informal language of “keep-change-flip” in an 
attempt to communicate a more advanced mathemati-
cal concept. Both Student 5 and Student 6 are becoming 
more focused on reading mathematics; of necessity, this 
implies transitioning to more academic use of language – 
particularly regarding students receiving information.
	
Students 9-11 are beginning to use more precise mathe-
matical language in their communications. Apart from de-
fining the local behaviour of a graph as an “S”, they employ 
mathematical terms in correct contexts. Their communi-

cation is less social and more academic in nature.
	
Altogether, the progress through the framework depicts 
language initially being social and informal and becoming 
more academic and formal. Language initially tolerated in 
early stages becomes replaced by sophisticated structures 
and ideas.

Cognitive Level 
It is easy to misconstrue the level of mathematics with 
the cognitive level used by a student in solving a problem. 
Examples, applications, or investigations of relatively ele-
mentary mathematics can be posed in ways that require 
significantly higher levels of cognition. The topic of math-
ematical investigation does not equate to cognitive levels; 
the environment through which the student is experienc-
ing the topic connotes the cognitive level.
	
The transcripts demonstrate that, independent of the lev-
el of the mathematical topic under investigation, Students 
1-12 progress from tasks requiring very low cognitive load 
(i.e., list prime numbers) to a task – albeit self-imposed – of 
high cognitive load (i.e., invent a new theorem). It is yet un-
known, however, if students progress through the frame-
work by experiencing more cognitively demanding tasks 
or if they cannot accomplish more cognitively demanding 
tasks until they are sufficiently cognitively mature for such.

Locus of Activity 
A progression from teacher-centric to student-centric ac-
tivity can be recognized through the transcripts. While the 
transcripts from Student 1-3 demonstrate students’ work 
with minimal input from the teacher, the mathematical 
task investigated by the students was developed by the 
teacher. Thus, locus of activity is deemed to be teach-
er-centric. Students 9-11 are investigating a problem with 
little or no teacher input. They are relying on the power 
of the group of students to ascertain answers. This is 
deemed student-centric. Student 12 provides an exemplar 
of the most extreme case of student-centric work. Student 
12 develops a new mathematical theorem independent 
from the teacher and text he has experienced.

The progression from teacher-centric presentation of 
information to student-centric activity underpins that 
knowledge transfer is not the primary responsibility of 
the teacher; rather, knowledge construction, to a greater 
extent, depends on student interaction. Therefore, stu-
dents need additional opportunities to interact and col-
laborate with others.  Noting that Student 11 developed 
a new mathematical theorem independent from teacher 
direction may argue that students need additional op-
portunities to learn independently through substitute 
approaches that enhance creative thinking. These can be 
integrated with cooperative learning. In effect, a paradigm 
shift is needed to move education from an instructional 
paradigm to a learning paradigm. 

Primary Mode of Communication 
As with other dimensions, a transition can be seen from 
the lowest to the highest stages in respect to the primary 
role of student communication. In the earliest stages, Stu-
dents 1-3 are primarily listening and minimally responding 
to the teacher. In more central learning stages, Students 
4-7 and 8-11 are more focused on reading mathematical 
texts and speaking with other students. In the last stage, 
Student 12 communicates through writing.

Both in the preceding transcripts of student work and in 
relevant literature, there is evidence that language can 
act as an instrument that can mediate thought process-
es in a variety of ways ranging from instructional prac-
tices to conceptual learning. From the perspective of 
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language acquisition, the progression of primary mode of 
communication being listening  speaking  reading   
writing is quite obvious. More precisely, the pattern may be 

 . However, it should be recog-
nized that this progression holds for mathematics learning 
as well, when mathematical fluency is the educational goal. 

Beyond Recognizing Student Errors
Many frameworks can determine the existence of mathe-
matical and linguistic errors as students perform, and com-
municate about, mathematics (e.g., Adu-Gyamfi, Bossé, & 
Chandler, 2015; Adu-Gyamfi, Stiff, & Bossé, 2012; Brown, 
Bossé, & Chandler, 2016). While is this valuable? First, it may 
do little to explain from whence these errors arise. Second, 
focusing singularly on mathematical errors may paint an 
overly sombre representation of student understanding and 
learning. Third, focussing on errors may not provide sugges-
tions of instructional techniques to help students overcome 
erroneous thinking. Absent from many frameworks is what 
students can do and what they understand.

The Math Acquisition Framework investigated in this study 
determines in which stage of mathematical learning a stu-
dent presents himself. In return, quite possibly, the most 
valuable aspect of using the framework may be in recog-
nizing that particular strengths, weaknesses, and styles of 
communication – among numerous other factors – pres-
ent themselves in each level of learning. Thus, mathemati-
cal performance and linguistic use can be seen as naturally 
embedded within a stage of learning rather than as types 
of errors. Within stages of learning, these behaviors can be 
recognized as natural components of the learning process. 
This perspective is made available through the framework’s 
connections with language acquisition. In the learning of a 
second language, grammatical errors and linguistic misuse 
are recognized as natural, experiential components of learn-
ing and not singularly as errors in understanding.

Another aspect of using the Math Acquisition Framework is 
its independence of stages of learning to the mathematical 
topic. It is not the elevation of the mathematical topic that 
determines whether or not the student is in an experience 
determined to be either cognitively undemanding or cogni-
tively demanding. Rather, it is the learning activity that de-
termines this. 

The Math Acquisition Framework (Bossé, et al., 2018a; Bossé, 
et al., 2018b) may be iterative as new ideas are encountered. 
For instance, when an algebra student first sits in a calcu-
lus class, he may immediately be bombarded with novel 
ideas that are possibly – initially and temporarily – beyond 
his grasp (comprehensible input). He may sit silent while at-
tempting to assimilate what the teacher is reciting (the silent 
period). When he begins to communicate calculus ideas, his 
ideas may not be well articulated (comprehensible output). 
He may begin communicating novel ideas through vocab-
ulary and ideas previously understood in algebra (interlan-
guage). And so forth. Thus, the framework can be recognized 
as either a sequence of stages to be traversed once in a 
learner’s lifetime of mathematical learning or as an iterative 
process when new mathematical topics are encountered. 
However, when the framework acts iteratively, the spiral of 
learning gets tightened and many notions need not be re-
taught and relearned. 

A significant question remains: Is the Math Acquisition 
Framework a process through which students naturally pro-
gress or a process toward which education should direct 
learning activities and experiences? The authors of this study 
believe that both are the case. Some implications of this fol-
low.  

      

Implications
The authors strongly caution against a misinterpretation of 
the Math Acquisition Framework. While it can be employed 
as a component of assessment, it should not be singularly 
considered a measure of mathematical understanding com-
mensurate with the stage into which a student falls. Rather 
than determining a level of mathematical knowledge, the 
framework represents stages in the learning of mathemat-
ics: how math is learned rather than how much is learned. 
Understanding mathematical learning through a student’s 
mathematical communication and through the lens of the 
Math Acquisition Framework can assist teachers in assessing 
a student’s mathematical understanding. This is particular-
ly valuable when students are experiencing comprehensi-
ble input, comprehensible output, and interlanguage, and 
thereby when students’ articulations may be most difficult to 
understand and discern for mathematical comprehension. 
The researchers argue that viewing mathematical learning as 
a series of stages similar to those involved in language ac-
quisition has several important implications for mathemat-
ics education. Understanding these stages can facilitate and 
inform both the student’s and the teacher’s role in learning. 
Particularly, the teacher should see that a student progress-
ing through the stages of the framework includes a transition 
from a teacher-centric experience to that of a student-centric 
experience. Thus, a teacher needs to develop and sequence 
activities to accomplish this growth in the student. 

Teachers also need to provide a sequence of activities where-
in students experience increasingly cognitively demanding 
activities. It may well be that many teachers underestimate 
the ability and willingness of students to persevere through 
cognitively demanding tasks.  It may also be that teachers 
equate higher cognitive demand with progressing through 
sequenced curricular materials. These notions should be 
challenged. 

Teachers need to employ activities that cause the students 
to communicate with other students. Students need the op-
portunity to wrestle with ideas. Learning occurs through this 
wrestling. 

Some natural questions can be raised. While it is obvious-
ly possible to show students mathematical ideas which far 
exceed their capacity to grasp, is it valuable to teach slight-
ly above their level to promote progress through the Math 
Acquisition Framework and learning? This is not yet known. 
Learning is a complex activity in which there is an element 
of progressive levels involved. Having students encounter 
mathematical ideas that exceed their immediate capacity 
to grasp has several implications. First, might this promote 
procedural learning rather than conceptual understanding? 
How might that positively or negatively affect growth toward 
mathematical fluency? If emersion in a second language 
environment is considered an effective vehicle for learning, 
could student encounters with more advanced concepts be 
equated to emersion? 

Conclusion
Altogether, investigating mathematical learning theories 
through the lens of language has led to the development 
of a novel, synthesized sequence of mathematical learning 
constructs which include: Receiving, Replicating, Negotiat-
ing Meaning, and Producing. Understanding the stages of 
mathematical learning is essential for educators who are 
attempting to create curricula and instructional experienc-
es commensurate with a student’s level of mathematical 
understanding. Altogether, many of the findings within this 
investigation lead to additional hypotheses and questions 
that have only been proposed herein. It is hoped that future 
research attempts to answer these questions and verify or 
disprove these hypotheses.
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Further Research
The present study examined a novel framework of math-
ematical learning through selected samples of student 
work. One clear path for further research is to apply this 
framework to a greater variety of learning contexts, in-
cluding longitudinal studies of the development of math-
ematical knowledge. This study also focused on the par-
allels between linguistic comprehension and production 
and Cummins’ model of second language acquisition with 
mathematical learning. Several other parallels between 
the two remain to be explored, including whether or not 
we can identify a code similar to interlanguage in the realm 
of mathematics and to what extent Vygotsky’s (1986, 1978) 
theories of sociocultural learning and language acquisi-
tion may also inform the learning of mathematics.

This study did not investigate the factor of age in mathe-
matical learning; but, given that it has been proposed that 
there exists a critical period for language development be-
ginning with the first few years of life and that the window 
of opportunity for learners to become fluent in a second 
language is limited (Lenneberg 1967, 1975), could a similar 
critical period exist for the learning of mathematics? If so, 
does this mean that mathematics instruction and learning 
should be strongly emphasized in the earliest ages of a 
child’s development, and that emphasis should continue 
through puberty? In a related question, if students usually 
take five to seven years to gain second language fluency, 
might there exist a minimal time span necessary for most 
students to gain mathematical fluency? Since mathemat-
ics is topical (some may argue, sequentially topical) and 
ideas grow in sophistication as students progress through 
them, will that mean that this minimal time frame applies 
to every topical idea or does it depend on the type of topic 
being treated? Both of these ideas, if borne out by further 
research, would have significant implications for mathe-
matics curricula.
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